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This article focuses on the problem of finding a shortest path in plane with obstacles. Prob-
lems of such nature occur for instance in robotics or transport and are of great importance.
The problem is analyzed using the methods of mathematical analysis and calculus of vari-
ations. Definitions of basic concepts of the problem are given. From these definitions, useful
properties, such as convexity of the length functional, are proven. These properties are used
to show the existence of a solution in one of the considered cases of the problem. Other case of
the problem was considered, where it is established under which conditions does a shortest
path attain its general form and what this form looks like.
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1 Introduction

The main goal of this paper is to answer a seemingly trivial question; what is the shortest path in a
plane between two endpoints that avoids given obstacles? People usually have a strong intuition for
finding a solution to such problems, and this will be supported with mathematically rigorous methods.

Problems of shortest paths are usually treated as discrete problems in graph theory. Practically, this
approach is good enough but some conventional algorithms (A* algorithm, Dijkstra’s algorithm) for
instance do not guarantee that the chosen path is indeed the shortest.!

Because of this, the problem will be treated purely analytically so that different, hopefully more ef-
fective methods for solving the problem at hand, can be utilized. Due to the lack of literature concern-
ing such approach, suitable definitions and notations involved in the problem will firstly be introduced,
namely the idea of an obstacle and an admissible curve. From an analytical perspective, the problem
can be further classified as a constrained variational problem.

2 Theoretical part

In order to develop an elementary understanding of the problem, calculus of variations along with the-
orems of real analysis will be studied. The concept of a functional and first variation will be introduced
while omitting details that can be found in books on calculus of variations and real analysis.>*

2.1 Calculus of variations

Many actions in nature can be quantified with an appropriate functional, usually given in an integral
form. For example, a path described by a smooth function y(x) on an interval [a, b] is measured by
fab 41+ (y")?2dx. This can intuitively be shown by slicing up the interval into small pieces and meas-
uring the length of each small hypotenuse described by by the change in X, dx and the change in y,
dy.
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Figure 1: Understanding the length functional

The infinitesimal lengths ds can then be added up along the interval [a, b] by taking the integral
over [a, b]. Since dx goes to 0, for the derivative of y(x) the equality y' = Z—i holds. Therefore:

L(y):‘/bds:/b\/m:/bﬂ1+<Z—i>2dx:fb\/1+(y’)2dx

Definition 2.1. Suppose a function y has a continuous derivative on [a,b]. The length of y on [a,b] is

defined by the integral
b
10)= [ 1+ s W
a

Definition 2.2. A functional is a function
I:F>2y-1Q) eR,

where F is a space or a set of functions.

The natural question is then to ask what function minimizes the functional L(y). Calculus of vari-
ations provides a necessary condition for an extreme of a functional in form of the first variance and
the Euler-Lagrange differential equation.

Theorem 2.1. If a function y is a local extreme of the functional 1(y) that is defined on F and h is a
function such that y + th € F for all smallt € (—¢,¢), then

i [+~ 1)

et = iy S

0.

The expression §I(y)h is called the first variance of the functional I in y in the direction of h.

Theorem 2.2. Suppose a functional I is of the form I(y) = fab F(x,y,y")dx, where F is continuously
partially differentiable with respect to all there variables and y is a smooth function of x. If y is a local
extreme of I and has fixed endpoints: y(a) = A, y(b) = B, then it must satisfy the Euler-Lagrange equation:

9F d (OF
5_E<ay’>_o' )

This is one of the most important theorems of calculus of variations. Proof will be omitted but can
be found in books on the topic.? The equation can be applied to the length functional (1) to find the
shortest path between the points [a,A] and [b, B]. By taking the appropriate partial derivatives, the
equation (2) becomes:

dx \ 1+ )2
B-A

The solution to this differential equation is of the form y(x) = ¢;x + ¢y which with ¢; = >

and
—-a

¢y = B-— i;A is a straight line going through the desired points. With a little more effort, it can be
—a

shown that this solution is the global minimizer. Therefore, the shortest path between two points in a

plane is a straight line. Many other functional can be formed to describe different aspects of a curve. For

example, the functional T(y) = fb _V”(;")Z

. dx gives a total time in which a particle gets from [a, A] to

[b, B] in a homogeneous gravitational field. The solution of the corresponding Euler-Lagrange equation
then gives the path of shortest time - The Brachistochrone. Other examples along with solutions and
with proofs of preceding theorems can be found in books on calculus of variations of authors paper.2*
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2.2 Theorems of real analysis

In order to support the intuition behind the original problem with mathematically rigorous methods,
some of the most important theorems of real analysis will be utilised. Their proofs and other useful
theorems can be found in books on mathematical analysis.>

Theorem 2.3 (Bolzano’s theorem). Ifa real function f is continuous on [a, b] and satisfies f(a)- f(b) < 0,
then there exists ¢ € [a, b] such that f(c) = 0.

Theorem 2.4 (Mean Value Theorem). Ifa function f is differentiable on [a, b], then there existsc € [a, b]

£ - f(@)

such that f'(c) = Z:—a

Figure 2: Bolzano’s Theorem and Mean Value Theorem

These two theorems will be used as lemmas when proving that a given curve is indeed the shortest
one. Since convexity and concavity play a role in the problem, definition of convex set and concave
function will now be given.

Definition 2.3. Suppose X is a subset of a vector space E. The set X is called convexifVx,y € XAt € [0,1]
the line segment tx + (1 — t)y € X.

Definition 2.4. A real function f is said to be concave on an interval X, if Vx;,x, € X AVt € [0,1] the
inequality

Jltxy + (1 = 0)xy) < tf(xy) + (1 —6)f(xz)
holds.

v v 7(f.2) ()

(22, f(z5)]

Figure 3: Properties of real concave functions
From this definition it can additionally be shown that the tangents to a concave function lie above

the function, the first derivative of a concave function is not increasing and its second derivative is
non-positive.>
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3 Results

Firstly, we will provide definitions of obstacles and admissible curves. It will later be shown that other
useful properties can be derived from these definitions.

Definition 3.1. An obstacle P € R? is given by a pair (py,>) or (p,, <), where py, p, are continuous
functions. The obstacles themselves are defined as the following sets:

P(p1>>) = {lax, ayllay > pi(ax)}
P(p2, <) = {[bx by]|by < p1(bx)}
The functions describing the obstacle may have a restricted range to a closed interval.

Definition 3.2. Suppose desired endpoints [a, A], [b, B] are given along with obstacles R, ..., %, on [a, b].
A differentiable curve y is said to be admissible if:

Vx € [a,b],Ym=1,..,n: [x,y(x)] & P, Ay(a) = A,y(b) = B. 3)

[b, B]

(a, A] .

Figure 4: Visualisation of the problem

3.1 One obstacle with fixed endpoints

Suppose only one obstacle P(p, <) described by smooth concave function p is given along with two
endpoints that lie on the obstacle: p(a) = A, p(b) = B. The set of all admissible curves A is of the form:

A = {y|y is differentiable, y(x) > p(x)Vx € [a, b], y(a) = p(a), y(b) = y(p)}. @

a b x

Figure 5: Problem with a concave function

Intuitively, the shortest path leads along the obstacle, that is, the curve y = p is the shortest one.

Theorem 3.1. Suppose we are given an obstacle P(p, <), where p is differentiable, and two endpoints
A = p(a), B = p(b). Under the assumption of an existence of a global minimizer, the path 'y = p is the
shortest one in A.

Proof. We proceed by contradiction. Suppose that shortest path satisfies y(c) > p(c) for some c € (a, b).
In this case we can define a new function y,,,(y) the following way:

y(x) for x € [a, e,]
Ypw(X) = 1p'(©)(x —c) + plc) forx € [eg, ep]
y(x) for x € [ey, b]
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, Where e, e}, are points such that p'(c)(e, — ¢) + p(c) = y(e,) and p’(c)(e, — ¢) + p(c) = y(ep). Their
existence is guaranteed by Bolzano’s theorem 2.3 and the concavity of p. The length of the original
curve y can be broken up into three integrals:

€q ep b
L(y) = f J1+02dx+ f J1+O2dx+ f J1+02dx,

The length of y,,, can be evaluated from its definition:

eq e b
L(Ypw) =f 7/ 1 +(y’)2dx+f b\/1+(p’(c))2dx+/ 7/ 1+ (y')dx.

Because p'(c)(x — ¢) + p(c) is a straight line between [e,, y(ep)] and [ep,, y(e,)] and y is not straight on
[eq, ep] by definition, we have L(yp,,) < L(y), which is a contradiction, because y was assumed to be
the shortest path. Therefore, if there is a minimizer, it must be p. This completes the proof. O

In this basic example, one can proceed without needing to assume the existence of a minimizer.
Traditionally, direct methods of calculus of variations are used to prove statements of such nature.
However, the following theorem is fairly elementary and does not require any background in these
methods. On the other hand, it works with a stronger assumption on p.

Theorem 3.2. Suppose we are given an obstacle P(p, <), where p is twice differentiable and two endpoints
A = p(a), B = p(b). The global minimizer is the path y = p.

Proof. We wish to prove that for a concave function p on [a, b] and a differentiable function d(x) > 0
on [a, b] and d(a) = d(b) = 0, the inequality

b b
f\/1+(p'+d’)2dx2f 7/ 1+ (p')*dx

holds. Evidently, (d’)? > 0 for any real function on [a, b] C R. This is equivalent to
1+ +d Pl + (P12 [p'd +1+(p)*F

for any p’. Since both sides of the inequality are positive, square root on both sides can be taken and
the inequality sign kept:

V1@ 214 (pR > pd +1+ ()

After dividing both sides by 4/1 + (p’)? and rearranging, the inequality becomes

! ! ! p,d/
\/1+(P +d)2_\/1+(l))22\/?(p,)2 (5)

By integrating both sides on [a, b] we get the following integral inequality:

b b b d’
\/1+(p’+d’)2dx—/ \/1+(p’)2dx2f p—dx.
-/<; a a V1+(p)?

On the right side we can proceed with integration by parts. Let

_ 4 T
u= oo v =d
PN R- 2

_ V1+(p')? v=d

1+(p")?

u =

d|dx

(')? "
b ’ g1 ’ b b - 1+ ")?
T T A
o I+ ()2 a L+

S
it R
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The first summand on the right side vanishes since d(a) = d(b) = 0. Since p is concave, then —p” > 0.
This means that the whole integrand is positive, therefore, the whole integral must be positive, finally
giving us the desired inequality:

b b b 'd’
\/1+(p’+d’)2dx—v/ \/1+(p’)2dx2/ p—deO
L a a V1+(p')?
b b
/ \/1+(p’+d’)2dx2‘/ 7/ 1+ (p')2.dx

3.2 Convexity of A and the functional L

Proving that a given set or a function is convex is useful, because one can consequently resort to more
methods of solving a given problem using already developed methods of convex optimization.> In
this chapter, we will demonstrate the convexity of the set A defined by (3) and the length functional

fab \V1+ (y)2dx.

Theorem 3.3. Let C'[a,b] be the set of all differentiable functions on [a,b]. The subset A C C'[a,b]
defined by (3) is a convex set.

Proof. Without loss of generality, we will only prove that the set (4) is convex. Let y;,y, € A. Then the
function

y(x) = ty1(x) + (1 = )y(x),

where x € [a,b] At € [0,1]. y is differentiable, since y,, y, are differentiable and ¢ is a constant with
respect to x. Since t > 0 and 1 — ¢ > 0 the two inequalities ty;(x) > tp(x), (1 — t)y,(x) > (1 — t)p(x)
can be added to obtain

y(x) = ty1() + (1 = D)y,(x) > tp(x) + (1 — 1) p(x) = p(x).
Also, y,(a) = y,(a) = p(a) and y;(b) = y,(b) = p(b) and therefore
y(@) = tyi(a) + (1 = )y,(a) = tp(a) + p(a) — tp(a) = p(a),

y(b) = ty1(b) + (1 — t)y,(b) = tp(b) + p(b) — tp(b) = p(b).

The function satisfies all three conditions in (4) and therefore y(x) = ty;(x)+(1—t)y,(x) € A Yy, », €
A At €]0,1], making the set A convex. O

Theorem 3.4. The length functional I(y) = fab F(x,y,y")dx is convex over all curves A C C*[a, b].

Proof. The functional I(y) = / ab F(x,y,y")dx is said to be convey, if it satisfies

oF kL ©

’ _ N> h—
F(x,y+h,y +k) F(x,y,y)_hay 3y

V[x,y,y',h,k] € [a,b] X R X R x R X R.2 For the integrand F = /1 + (y")2, where 2—1; = 0 and

OF Y with [h, k] = [d, d'], the inequality (6) is equivalent to (5), making the length functional

oy’ \/lzjr(y’)2
L(y) = [, V1 + (y")*dx convex. 0
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3.3 One obstacle with free endpoints

Let us have an obstacle P(p, <), where p is a concave, continuously differentiable on [a, 8] C [a, b]
and two endpoints [a, A], [b, B]. If the straight line [,5(x) between the two endpoints is admissible,
then it is also the shortest path. If it is not, we suppose that [, 5 and p intersect at points «, 8 such that
a<a<f<b.

Theorem 3.5. Under the above mentioned assumptions, there exist two points c,, cp such that the curve
y € A of the form
P'(ca)(x —cq) + p(ca) forx € [a,cq]
y(x) = p(x) forx € [cq.cp]
p'(cp)(x —cp) + pcp)  forx € [cp, b]
where y(a) = A, y(b) = B exists and is the shortest one in A.

Y

Figure 6: Second case of the problem

Proof. The existence of ¢, and ¢, is proven by the following argument. Without loss of generality, we

only give proof of ¢,’s existence. If o and f exist, then by the Mean Value Theorem 2.4 there exists
¢ € [a, B] such that p’(c) = %Z(a) = %, meaning that the tangent p’(c)(x — ¢) + p(c) is parallel
with l4 5 and lies on or above I, g, therefore p’(c)(a—c)+ p(a) > A. The function p is concave, therefore

p’ is non-increasing, which means p'(«) > p’(¢c) = %. Also, since a — « < 0, the following holds:

B-A
b—a

p'(@)(a—a)< (a—a).

After adding p(a) = I4p(a) = %(fx — a) + A to both sides if the inequality, we yield the property

p'(a)(a—a)+ p(a) < A.

By defining a function
f@O=p®)a-0)+@®

for t € [a, c] and observing that f(a) < A, f(c) > A, Bolzano’s theorem 2.3 guarantees an existence of
precisely ¢, such that p'(c,)(a — ¢,) + p(c,) = A. The existence of ¢;, can be proven analogously.

To show that y(x) is the shortest path, one can proceed similarly as in the first case of the problem.
Assume that the shortest path differs from y at least at one point on [a, b] and construct a new path that
is shorter than the path that was assumed to be the shortest one, arriving at a contradiction. Detailed
proofs and other cases of the problem can be found in authors paper.* O

4 Discussion

This article treats a problem of finding an optimal path uniquely using the methods of mathematical
analysis, more precisely, the methods of calculus of variations. Although the article does not provide a
definite algorithm for finding the shortest path, it deals with more fundamental and theoretical aspects
of the problem such as the length itself and its properties. The very existence of a solution is proven in
one of the cases. This method might be extendable to prove the existence of a solution to any case of
the problem. Even though the introduced definitions were constructed intuitively, they still had useful
mathematical properties. Ideally, in the future research a necessary condition for the shortest path will
be discussed and provided. This condition might be in form of a differential equation, similarly to the
Euler-Lagrange equation.
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5 Conclusion

Basic introduction from an analytical perspective was given along with definitions of basic concepts of
the problem, namely the concept of length functional, set of all admissible curves and obstacles. The
convexity of the set of all admissible curves and the length functional was demonstrated, which allowed
us to prove the existence of a solution in one of the cases. Other case of the problem was considered,
where we established under which conditions does a shortest path attain its general form and what this
form looks like.
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