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Explanation for general audience

The article focuses on a branch of mathematics called ’al-
gebraic number theory’ and in particular its applications
in elementary number theory - solving hard diophnatine
equations. Let’s back up a bit.
Whenworking with integers, we oftenmake use of either
modular arithmetic or their unique factorisation into
primes. The crown jewels of modular arithmetic are
quadratic residues, which allow for more advanced dis-
cussions concerning divisibility over the integers. The-
orems such as Euler’s criterion then allow us to quickly
decidewhen a given diophantine equation has no integer
solutions - simply find a modulus under which no solu-
tions exist. These basic methods can, however, get us
only so far. Take an equation such as 𝑥2 + 13 = 𝑦3
for an example. It has an integral solution for 𝑥 = 70,
so a solution modulo every integer, and no obvious way
to factor presents itself. So how do we proceed? Well,

it is not entirely true, that no easy factorisation exists,
over the complex numbers one is immediate: 𝑥2 + 13 =(𝑥 + √( − 13))(𝑥 − √( − 13)). What use could that be to
us, though?
Questions such as that puzzled the old masters. When
attempting to solve the famous Fermat’s Last Theorem -
i.e showing that the equation 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no non-
trivial integral solutions for 𝑛 > 2 - mathematicians such
as Carl Friedrich Gauss, Ernst Kummer and Peter Gustav
Dirichlet pioneered the field of algebraic number theory
and paved the way for mathematicians in centuries to
come. In particular they tried considering number the-
oretic of complex roots of polynomials over the integers,
or rather extensions of ℚ containing these numbers. It
turns out that studying the ideals in certain subrings of
these number fields is the way to proceed. Indeed, it is
true, that ideals uniquely decompose into prime ideals,
much like ordinary integers do. This is in stark contrast
with the rings themselves, which mostly do not admit
unique factorisation. In what is a beautiful connection
of those two concepts, we introduce the ideal class group,
which neatly connects both concepts and provides the fi-
nal piece of the puzzle allowing us to solve equations by
factoring in fields containing, say, the square-root of−13.
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1 Introduction

Finding solutions to an equation over the integers in two
or more variables, commonly referred to as diophantine
equations, has been the focus of number theory over the
past two millennia. Some of the most studied problems
include finding Pythagorean triples or solving the equa-
tion 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 for 𝑛 ⩾ 3 featured in Fermat’s Last
Theorem.
We may go on about solving equations in one of sev-
eral ways. We can attempt to restrict the solution set
by the means of inequalities, factorisation or modular
arithmetic. One of the more advanced areas of modu-
lar arithmetic are the so-called quadratic residues, which
will help us work with integer squares.

2 Quadratic residues

Definition 2.1. We call an integer 𝑑 coprime with 𝑛 a
quadratic residue modulo 𝑛, if there exists 𝑥 ∈ ℤ such
that𝑥2 ≡ 𝑑 (mod 𝑛), and a quadratic nonresiduemodulo𝑛 otherwise.
Finding the set of quadratic residues in ℤ𝑛, the ring of
residues modulo 𝑛, is rather difficult without knowing
the factorisation of 𝑛, however the case with 𝑛 being a
prime power is easier. To do this, we define the Legendre

symbol for odd primes 𝑝:
(𝑎𝑝) = ⎧⎨⎩

1, if 𝑎 is a quadratic residue modulo𝑝,0, if 𝑝 ∣ 𝑎,−1, otherwise.

The Legendre symbol can be computed as

(𝑎𝑝) ≡ 𝑎𝑝−12 (mod 𝑝) .
Indeed, the case 𝑝 ∣ 𝑎 is vacuous. Fermat’s Little The-
orem states for all the other 𝑎:

0 ≡ 𝑎𝑝−1 − 1 = (𝑎𝑝−12 + 1) (𝑎𝑝−12 − 1) (mod 𝑝) ,
or 𝑎𝑝−12 ∈ {±1} (mod 𝑝). If 𝑎 is a non-zero square in ℤ𝑝,
then we have 𝑎𝑝−12 ≡ 𝑥𝑝−1 ≡ 1 (mod 𝑝) for some 𝑥. It
can be shown that a polynomial of degree 𝑛 has at most 𝑛
roots in ℤ𝑝, so the congruence 𝑥𝑝−12 − 1 ≡ 0 (mod 𝑝) has
no more than 𝑝−12 incongruent solutions. Every element
of ℤ𝑝 has at most two square roots, since 𝑥2 ≡ 𝑦2 has two
solutions, namely ±𝑦. There are precisely 𝑝−12 non-zero

squares in ℤ𝑝, all of which are roots of 𝑥𝑝−12 −1, so all the
non-residues must satisfy 𝑥𝑝−12 ≡ −1 (mod 𝑝).
Quadratic residues of prime powers can be quite easily
found using the knowledge of quadratic residuesmodulo
a prime, and reconstructed for arbitrary positive integers
using the Chinese remainder theorem.
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There are many important and interesting properties of
quadratic residues, for example the Law of Quadratic Re-
ciprocity and its supplements. For a more comprehens-
ive overview of the theory of quadratic residues, we direct
the reader to [1, 2]. We demonstrate the power of quad-
ratic residues on a couple “victims” in the chapter Asso-
ciated content.
Nevertheless, not all equations are solvable using only
modular arithmetic. Take, for instance, the equation:𝑥2 + 13 = 𝑦3.
This equation has an integral solution (70, 17) and there-
fore a solution modulo every positive integer. Further-
more, there are equations with solutions differing in size,
for example the equation 𝑥2 + 26 = 𝑦3 with a solution
for 𝑥 = 1 and 𝑥 = 207. There is no easy way to bound
variables in an equation with coprime powers, as can be
seen in prevalence of problems such as Catalan’s conjec-
ture, which was only recently confirmed in the affirmat-
ive. We then have to find a new course of action in, say,
factoring one of the sides.
Recall the formula for the difference of squares 𝑎2 −𝑏2 =(𝑎 − 𝑏)(𝑎 + 𝑏), which can be extended to 𝑎2 + 𝑏2 =(𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) by using complex numbers. Likewise,
we get 𝑥2 + 13 = (𝑥 + √−13) (𝑥 − √−13), which con-
tains both imaginary and irrational numbers, certainly
not ideal from an elementary viewpoint. In the rest of
our article, we will be exploring the necessary theoret-
ical background, which allows us to solve equations us-
ing similar unorthodox factorisations.

3 Number fields

The idea of using imaginary and irrational numbers in
solving equations over the integers goes all the way back
to Carl FriedrichGauss, whowas also one of the founders
of modern modular arithmetic. First breakthroughs in
this algebraic number theory were done in hopes of solv-
ing Fermat’s Last Theorem, and even though the first cor-
rect proof came via elliptic curves, the algebraic view gave
the problem valuable insight.
We will be studying complex roots of polynomials over
the integers, called algebraic numbers, and be paying es-
pecially close attention to algebraic integers, i.e. algebraic
numbers, which are roots of monic polynomials over the
integers. The minimal polynomial of an algebraic num-
ber 𝛼 is the integer polynomial 𝑓 with the smallest pos-
sible degree such that 𝑓(𝛼) = 0.
Definition 3.1. A field 𝐾 containing ℚ is said to be an
algebraic number field, if it contains only algebraic num-
bers and there exist 𝑥1,… , 𝑥𝑛 ∈ 𝐾, such that 𝐾 ={𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛|𝑐𝑖 ∈ ℚ}.
We will often simply call these sets number fields.

Definition 3.2. Let 𝛼1,… , 𝛼𝑛 be irrational numbers lin-
early independent over ℚ. We shall denote the smallest

(with respect to inclusion) number field containing these
numbers as ℚ (𝛼1,… , 𝛼𝑛).
The set of algebraic integers in a number field𝐾, denoted
by𝒪𝐾 , forms a ring. As a result, we will also be referring
to this set as the ring of integers of 𝐾. Before studying the
properties of 𝒪𝐾 , we would first want to know what it
looks like.
We will mainly be concerned with extensions of the ra-
tionals by a number whose minimal polynomial over ℤ
is quadratic, i.e. fields of the form ℚ(√𝑚) for 𝑚 ∈ ℤ,
such extensions are called quadratic fields.
The ring of integers of the fieldℚ(𝑖) is the ring of theGaus-
sian integers ℤ[𝑖]. We could conclude that the ring of
integers of the field ℚ(√𝑚) is simply ℤ [√𝑚], unfortu-
nately this is not always the case. It only takes a bit of
casework to arrive at the following characterisation:
Theorem 3.1. Let 𝑚 ≠ 0, 1 be square-free and 𝐾 =ℚ(√𝑚) a number field. Then:
𝒪𝐾 = {ℤ [√𝑚] = {𝑎 + 𝑏√𝑚|𝑎, 𝑏 ∈ ℤ} , if 𝑚 ≡ 2, 3 (mod 4),ℤ [ 1+√𝑚2 ] = {𝑎 + 𝑏1+√𝑚2 ||| 𝑎, 𝑏 ∈ ℤ} , if 𝑚 ≡ 1 (mod 4).
The proof follows from the form roots of quadratic poly-
nomials take and it can be found in [3]. We will now fur-
ther explore the theory surrounding these rings. Let us
begin with divisibility.
The only integers having a multiplicative inverse are
clearly ±1. Similarly, we define units as elements of 𝒪𝐾
with a multiplicative inverse. Plus and minus 1 are units
in 𝒪𝐾 for any 𝐾, often times, though, they are not alone.
Take the Gaussian integers ℤ[𝑖] with additional units ±𝑖
for an example. A similar generalisation can be made
from primes to irreducible elements of 𝒪𝐾 , as numbers
which cannot be written as a product of two elements
of 𝒪𝐾 both non-units. This time not all integer primes
are irreducible, for instancewemaywrite 5 = (2+𝑖)(2−𝑖)
in ℤ[𝑖] as a product of two non-units, yet the number 7 is
indeed irreducible, as we will soon see.
In fact, even unique factorisation into irreducible ele-
ments does not always hold, and wemainly want to work
with objects which uniquely factor into irreducibles. In
some rings, this condition is satisfied by ideals.
Ideals can be thought of as generalisations of multiples
of whole numbers in rings. Formally:
Definition 3.3. An ideal is a non-empty subset ℐ of a
ring 𝑅, such that for any (not necessarily distinct) ele-
ments 𝑎, 𝑏 of ℐ and 𝑟 ∈ 𝑅, we have 𝑎 + 𝑏 ∈ ℐ, 𝑟 ⋅ 𝑎 ∈ ℐ.
In this article, we will only be concerned with rings
whose ideals are generated by a finite set, which is sat-
isfied by 𝒪𝐾 . We will therefore think of an ideal ℐ of a
ring 𝑅 as a set {𝑟1𝑎1 + ⋯ + 𝑟𝑛𝑎𝑛|𝑎𝑖 ∈ 𝑅} for some 𝑛 ∈ ℕ
and 𝑟1,… , 𝑟𝑛 ∈ 𝑅. We say 𝑟𝑖 generate ℐ and denote this
ideal (𝑟1,… , 𝑟𝑛). An ideal generated by a single element,
i.e. (𝑎) for some 𝑎, is called principal.
If we were to define the product of two ideals, we would
want it to be generated by the pairwise products of the
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respective generators, and so the following definition
comes naturally:

ℐ ⋅ 𝒥 = { 𝑛∑𝑖=1 𝑎𝑖𝑏𝑖|||| 𝑎𝑖 ∈ ℐ, 𝑏𝑖 ∈ 𝒥, 𝑛 ∈ ℕ} .
Indeed, if ℐ and 𝒥 are generated by the sets {𝑎1,… , 𝑎𝑘}
and {𝑏1,… , 𝑏ℓ}, respectively, their product has the gen-
erating set {𝑎1𝑏1, 𝑎1𝑏2 … , 𝑎2𝑏1,… , 𝑎𝑘𝑏ℓ} and is an ideal
itself.
Beyond this, few obvious properties arise. For one, ideal
product is associative:

(ℐ⋅𝒥)⋅𝒦 = { 𝑛∑𝑖=1 𝑎𝑖𝑏𝑖𝑐𝑖||| 𝑎𝑖 ∈ ℐ, 𝑏𝑖 ∈ 𝒥, 𝑐𝑖 ∈ 𝒦,𝑛 ∈ ℕ} = ℐ⋅(𝒥⋅𝒦).
We also define the 𝑘-th power of an ideal like so:ℐ𝑘 = ℐ ⋅ ℐ ⋯ℐ⏟⎵⏟⎵⏟𝑘 .
Multiplication of principal ideals is exceptionally nice.
Not only is the product of two principal ideals principal,
we can form the following stronger result:
Theorem 3.2. If 𝑎, 𝑏 ∈ 𝑅, then:(𝑎)(𝑏) = (𝑎𝑏).
Proof. Clearly 𝑎𝑏 ∈ (𝑎)(𝑏) and since 𝑎𝑏 is con-
tained in (𝑎)(𝑏), so are all its multiples in 𝑅, therefore(𝑎𝑏) ⊆ (𝑎)(𝑏). Also, every finite sum ∑𝑛𝑖=1 𝑎𝑖𝑏𝑖 with𝑎𝑖 ∈ (𝑎), 𝑏𝑖 ∈ (𝑏), 𝑛 ∈ ℕ has every summand divis-
ible by 𝑎𝑏, so (𝑎)(𝑏) ⊆ (𝑎𝑏). !
Ideal divisibility can be defined in the evident way,
i.e. ℐ ∣ 𝒥 if and only if an ideal 𝒦 such that 𝒥 = ℐ ⋅ 𝒦
exists. The principal case is once again simple.
Corollary 3.1. The equivalence:(𝑎) ∣ (𝑏) ⇔ 𝑏 ∈ (𝑎)
holds for non-zero 𝑎, 𝑏 ∈ 𝑅.
Proof. If 𝑏 ∈ (𝑎), 𝑏 is a multiple of 𝑎, so 𝑏 = 𝑎𝑘 for
some 𝑘 ∈ 𝑅, hence from the previous theorem we have(𝑎) ∣ (𝑎)(𝑘) = (𝑎𝑘) = (𝑏). On the other hand if (𝑎) ∣ (𝑏)
holds, (𝑏) = (𝑎) ⋅ ℐ for a non-zero ideal ℐ ⊆ 𝑅. From
the definition of ideal product, every element of (𝑎) ⋅ ℐ is
represented by a finite sum of products of two elements,
one belonging in (𝑎) and the other in ℐ. Every such sum-
mand is divisible by 𝑎, therefore 𝑏 ∈ (𝑏) = (𝑎) ⋅ ℐ ⊆ (𝑎)
as desired. !
Let us now take a look at divisibility in the ring 𝒪𝐾 itself.
To help us through, we will invoke several familiar terms
used when describing complex numbers.

4 Norms and prime ideals

For a complex number 𝑧 = 𝑎+𝑏𝑖, we define its conjugate𝑧 = 𝑎−𝑏𝑖 and absolute value a non-negative real number
satisfying |𝑧|2 = 𝑧𝑧 = 𝑎2 + 𝑏2, so |𝑧| = √𝑎2 + 𝑏2.

We will define conjugates over a quadratic field slightly
differently:

(𝑎 + 𝑏√𝑚) = 𝑎 − 𝑏√𝑚,
(𝑎 + 𝑏1 + √𝑚2 ) = 𝑎 + 𝑏1 − √𝑚2 .

We then easily get 𝛼 = 𝛼 for rational 𝛼 and further-
more a number and its conjugate always share their min-
imal polynomial. Indeed, these numbers have a minimal
polynomial of degree at most 2 and non-rational num-
bers 𝑎 + 𝑏√𝑚, 𝑎 + 𝑏1+√𝑚2 have minimal polynomials(𝑥−𝑎)2−𝑏2𝑚 and (𝑥−𝑎)2−𝑏𝑥+𝑎𝑏+𝑏2 1−𝑚4 , respectively.
For𝑚 = −1 the definition of a conjugate number corres-
ponds with the classical definition of a complex conjug-
ate.
Rather than extending the definition of the absolute
value, we instead define the norm of a number as 𝑁(𝑧) =𝑧𝑧. The norm of a number is roughly the constant term
of its minimal polynomial:

Theorem 4.1. Let 𝑚 ≠ 0, 1 be a square-free integer. The
norm of 𝑎 + 𝑏√𝑚 ∈ ℚ(√𝑚) is:
• 𝑁 (𝑎 + 𝑏√𝑚) = 𝑎2 − 𝑚𝑏2, if𝑚 ≢ 1 (mod 4) ,
• 𝑁 (𝑎 + 𝑏1+√𝑚2 ) = 𝑎2 + 𝑎𝑏 + 1−𝑚4 𝑏2, if𝑚 ≡ 1 (mod 4) .

Taking norms helps in studying divisibility in 𝒪𝐾 . In-
deed, an element of 𝐾 has an integral norm iff it lies
in𝒪𝐾 . The norm is a multiplicative function, namely for𝑎 + 𝑏√𝑚, 𝑐 + 𝑑√𝑚 ∈ ℤ [√𝑚]:
(𝑎 + 𝑏√𝑚)𝑁 (𝑐 + 𝑑√𝑚) = (𝑎2 − 𝑚𝑏2)(𝑐2 − 𝑚𝑑2)= 𝑎2𝑐2 + 𝑚2𝑏2𝑑2 − 𝑚 (𝑎2𝑑2 + 𝑏2𝑐2)= 𝑎2𝑐2 + 2𝑎𝑐𝑚𝑏𝑑 + 𝑚2𝑏2𝑑2 − 𝑚 (𝑎2𝑑2 + 𝑏2𝑐2) − 2𝑎𝑐𝑚𝑏𝑑= (𝑎𝑐 + 𝑚𝑏𝑑)2 − 𝑚(𝑎𝑑 + 𝑏𝑐)2 = 𝑁 (𝑎𝑐 + 𝑚𝑏𝑑 + √𝑚(𝑎𝑑 + 𝑏𝑐))= 𝑁 ((𝑎 + 𝑏√𝑚) (𝑐 + 𝑑√𝑚)) .
An analogous computation can be carried through for
elements of the rings ℤ [1+√𝑚2 ]. If a number 𝑎 divides 𝑏
in 𝒪𝐾 in the sense that 𝑏 = 𝑎𝑐 for some 𝑐 ∈ 𝒪𝐾 , then𝑁(𝑏) = 𝑁(𝑎)𝑁(𝑐) and so 𝑁(𝑎) ∣ 𝑁(𝑏). The converse does
not always hold, take the numbers 2 + 𝑖 and 1 + 2𝑖 inℤ[𝑖] for an example, having the same norm and quotient2+𝑖1+2𝑖 = (2+𝑖)(1−2𝑖)5 = 4−3𝑖5 , which is not a Gaussian integer.
To properly study divisibility in𝒪𝐾 , wewill first check up
with units.
Let 𝛼 ∈ 𝒪𝐾 be a unit, then 𝛼 ⋅ 𝛽 = 1 for some 𝛽 ∈ 𝒪𝐾 .
From the multiplicativity of norms it follows:

𝑁(𝛼)𝑁(𝛽) = 𝑁(𝛼 ⋅ 𝛽) = 𝑁(1) = 1.
Because the norm of an element of 𝒪𝐾 is an integer, we
have𝑁(𝛼) = ±1 = 𝑁(𝛽), so units of𝒪𝐾 havenorms equal
to ±1. Furthermore, from the definition of the norm as a
product of conjugates, every element of the ring𝒪𝐾 with
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norm equal to±1 is a unit. The units of the ringsℤ [√𝑚],
where𝑚 ≢ 1 (mod 4), are given by:

±1 = 𝑁 (𝑎 + 𝑏√𝑚) = 𝑎2 − 𝑚𝑏2,
and are solutions to the extended Pell’s equation. The
case 𝑚 < 0 gives only finitely many solutions, units of
the ring ℤ[𝑖] are ±1,±𝑖 and the rest of the rings in ques-
tion have units only ±1. In the case of a positive 𝑚 the
units form an infinite multiplicative group. Similarly, for0 > 𝑚 ≡ 1 (mod 4) we only have a finitely many solu-
tions, for 𝑚 > 0 the set of units forms an infinite cyclic
group. The units in quadratic fields are therefore mostly
easily characterised.
Units help us work with principal ideals, namely to de-
cide whether two principal ideals coincide. To do so,
however, we will have to briefly stop by zero divisors in
rings.
If a ring contains no zero divisors, meaning the product
of two non-zero elements is itself nonzero, we call it an
integral domain. The ring of integers modulo 6 is not an
integral domain, since the product of 2 and 3 is 0. By con-
trast, the ring of integers𝒪𝐾 of a number field𝐾 is clearly
always an integral domain. We can then state the follow-
ing:

Theorem 4.2. Let 𝑎, 𝑏 ∈ 𝒪𝐾 . Then the equality (𝑎) = (𝑏)
holds iff there exists a unit 𝑢 ∈ 𝒪𝐾 satisfying 𝑎 = 𝑢𝑏.
Proof. If (𝑎) ∣ (𝑏), then 𝑏 ∈ (𝑎), so by corollary 3.1: 𝑏 =𝑎𝑥 for some 𝑥 ∈ 𝒪𝐾 . By the same token: 𝑎 ∈ (𝑏), so𝑎 = 𝑏𝑦, 𝑦 ∈ 𝒪𝐾 . Then 𝑎 = 𝑎𝑥𝑦, so 𝑎(1 − 𝑥𝑦) = 0, and
since 𝒪𝐾 is an integral domain, at least one of the two
factors is 0. The case 𝑎 = 0 is trivial, so let 𝑥𝑦 = 1, then
the numbers 𝑥, 𝑦 are units. On the other hand if 𝑎 = 𝑢𝑏
for a unit 𝑢 ∈ 𝒪𝐾 : 𝑎 = 𝑢𝑏 ∈ (𝑏), so (𝑎) ⊆ (𝑏). Similarly𝑏 = 1𝑢𝑎 ∈ (𝑎), or (𝑏) ⊆ (𝑎). Consequently (𝑎) = (𝑏). !
Having looked at units and norms, it is time to combine
the two together. That is because norms finally offer a
justification for the irreducibility of, say, 7 in ℤ[𝑖], as if
it were a product of two non-units, both of then would
have norm 7, since 𝑁(7) = 49. However, the equation7 = 𝑎2 + 𝑏2 = 𝑁(𝑎 + 𝑏𝑖) has no integer solutions, be-
cause squares only leave residues 0 and 1 when divided
by 4. In some cases, quadratic residues can even help us
proving irreducibility of a prime (note composite num-
bers are reducible by default), for example 2 and 7 in the
ring ℤ [√11].
We want to work with divisibility in the realm of ideals
of 𝒪𝐾 and to do so, we define the ideal norm. The norm
of an ideal is defined as the cardinality of a certain set,
which is not at all important to our exposition, the pre-
cise definition can be found in [4]. Regardless of our im-
precise definition, it is key that we can easily determine
the norm of a principal ideals of 𝒪𝐾 :
Theorem 4.3. Any𝑚 ∈ 𝒪𝐾 satisfies:

𝑁((𝑚)) = |𝑁(𝑚)|.

Despite the elegance of this statement, the proof is quite
involved and can be found in [5]. Note the appearance
of an absolute value, since the norm of an element can
be negative, but the ideal norm is always non-negative.
From the multiplicative property of the norm we see the
ideal norm is multiplicative on principal ideals. The
norm is multiplicative on any two nonzero ideals ℐ, 𝒥 ⊆𝒪𝐾 : 𝑁(ℐ)𝑁(𝒥) = 𝑁(ℐ ⋅ 𝒥),
The proof once again usesmore advanced number theory
tools. It can be found in [6, Theorem 22].
Now let us look at prime ideals, which are to ideals of𝒪𝐾
what primes are to integers.
Definition 4.1. Suppose𝒫 ⊂ 𝒪𝐾 is an ideal such that for
any 𝑎, 𝑏 ∈ 𝒪𝐾 satisfying 𝑎𝑏 ∈ 𝒫, it follows that 𝑎 ∈ 𝒫 or𝑏 ∈ 𝒫. We call such an ideal prime.
We know an element of 𝒪𝐾 has a prime norm only if it’s
irreducible. Prime ideal norms work in much the same
way.
Theorem 4.4. Let 𝒫 be a prime ideal. Then there are a
prime 𝑝 and a 𝑗 ∈ ℕ such that 𝑁(𝒫) = 𝑝𝑗 and 𝑝 ∈ 𝒫.
The existence of such a prime can be recovered from the
precise definition of the ideal norm, the proof can be
found in [6]. Prime ideals have norms equal to prime
powers and conversely, an ideal with a prime norm is
prime.
From our surface-level understanding of prime ideals so
far, we can see they are intrinsically tied to primes, one of
whose most important properties is uniqueness of prime
factorisation. The main reason we defined ideals is be-
cause factorisation number rings is often not unique. In-
deed, we can reduce the number 6 in the ring ℤ [√−5]
as follows: 6 = 2 ⋅ 3 = (1 + √−5) (1 − √−5). The num-
bers 2, 3, 1+√−5, 1−√−5 are all irreducible in ℤ [√−5],
since their norms are 4, 9, 6, 6, respectively. The exist-
ence of an element with norm 2 or 3 contradicts the fact
that 𝑁 (𝑎 + 𝑏√−5) = 𝑎2 + 5𝑏2 never leaves residues 2
or 3 when divided by 5, as they are both quadratic non-
residues modulo 5.
In general, unique factorisation into prime ideals in a
ring does not necessarily hold and when it does, we call
the ring a Dedekind domain. In particular, it can be
shown the ring𝒪𝐾 is a Dedekind domain. Any two ideals
share a unique greatest common divisor andwemay thus
call them coprime if it is the ideal (1).
The ideal (6) possesses unique factorisation (6) =(2, 1 + √−5)2 (3, 1 + √−5) (3, 1 − √−5), with the two
sets of factors of 6 generating ideals, which can be
factored as follows:

• (2) = (2, 1 + √−5)2,
• (3) = (3, 1 + √−5) (3, 1 − √−5),
• (1 + √−5) = (2, 1 + √−5) (3, 1 + √−5),

J. ASB Soc., 2021, 2(1), 29-34 doi:10.51337/JASB20211227004 32

https://doi.org/10.51337/JASB20211227004


 

  

www.journalasb.com Journal of the ASB Society 

 

• (1 − √−5) = (2, 1 + √−5) (3, 1 − √−5).
We have already met the following statement in the case
of principal ideals:
Theorem 4.5. Let 𝒜,ℬ be ideals 𝒪𝐾 . Then ℬ ∣ 𝒜 holds
iff𝒜 ⊆ ℬ.
A proof using unique factorisation into prime ideals
in 𝒪𝐾 can be found in [5]. The next couple of theorems
further explore the parallels between 𝒪𝐾 and the set of
integers:
Theorem 4.6. Let 𝒜,ℬ, 𝒞 be non-zero ideals of the
ring 𝒪𝐾 . If the equality 𝒜 ⋅ ℬ = 𝒞𝑘 holds for some 𝑘 ∈ ℕ
and furthermore 𝒜,ℬ are coprime, then there exist idealsℐ, 𝒥 ⊆ 𝒪𝐾 such that:𝒜 = ℐ𝑘, ℬ = 𝒥𝑘.
Proof. Let 𝒜 = 𝒫𝑎11 ⋯𝒫𝑎𝑝𝑝 , ℬ = 𝒬𝑏11 ⋯𝒬𝑏𝑞𝑞 be the re-
spective factorisations of 𝒜,ℬ into prime ideals. If 𝒜,ℬ
are coprime, the sequences of prime ideals 𝒫𝑖 and 𝒬𝑖 are
disjoint. Any prime ideal dividing𝒞𝑘 divides it in the 𝑘-th
power (or a multiple of 𝑘), so since𝒜 andℬ are relatively
prime, any prime ideal dividing their product divides ex-
actly one them in a power of a multiple of 𝑘. Both ideals
are thus 𝑘-th powers. !
The sum of two multiples of an integer 𝑑 is once again
divisible by 𝑑. We can state a similar property of ideals,
but this time, wewill hone in squarely on principal ideals.
Theorem 4.7. If 𝑎, 𝑏 ∈ 𝒪𝐾 and in ideal ℐ ⊆ 𝒪𝐾 satisfyℐ ∣ (𝑎), (𝑏), then ℐ ∣ (𝑎 ± 𝑏).
Proof. If ℐ ∣ (𝑎), (𝑏), then according to the theorem 4.5,𝑎, 𝑏 belong to ℐ, so from the definition of an ideal we have𝑎 ± 𝑏 ∈ ℐ. The conclusion follows. !
Unique factorisation into prime ideals holds in Dedekind
domains, particularly in 𝒪𝐾 , but the elements of ℤ andℤ[𝑖] also factor uniquely into irreducible elements. Carl
FriedrichGauss pondered, whether there are only a finite
number of such rings among the rings of integers in ima-
ginary quadratic fields, or 𝐾 = ℚ(√𝑑) for 𝑑 < 0. This
conjecture was proven in the affirmative in the 20th cen-
tury with the only such numbers being:−1,−2, −3, −7, −11, −19, −43, −67, −163.
There is little to be said about the real case, to the extent
that it is not even known if an infinite number of these
fields have unique factorisation.
In general, we want to define a structure measuring to
what extent unique factorisation fails in a ring. And that
is precisely the purpose of the so-called ideal class group.

5 Class groups

Consider the set of all the ideals in the ring 𝒪𝐾 . We say
two ideals ℐ, 𝒥 are equivalent, denoted as ℐ ∼ 𝒥, if 𝑎, 𝑏 ∈

𝒪𝐾 such that ℐ ⋅(𝑎) = 𝒥⋅(𝑏) exist. This relation partitions
the set of ideals into equivalence classes, where two ideals
lie in the same class if and only if ℐ ∼ 𝒥.
Multiplying an ideal by a principal one leaves its class in-
variant. The set of ideal classes then forms a multiplicat-
ive group, inwhich the class of principal ideals acts as the
neutral element. Indeed, we have seen that ideal product
is associative and any non-zero ideal of a Dedekind ring
has an inverse, as shown in [5, Theorem 4.1.7.], which
contains the proof for prime ideals. The existence of an
inverse of any non-zero ideal in 𝒪𝐾 then follows from
unique factorisation into prime ideals.
The group described above is known as the ideal class
group of the ring 𝒪𝐾 .
Theorem 5.1. The ideal class group of the ring𝒪𝐾 is finite.
A proof of this statement can be found in [5, Corollary
5.2.5.]. Note the ideal class group in an arbitrary ring
is, in general, not finite, even if we restrict our efforts to
Dedekind rings.
The number of ideal classes in𝒪𝐾 is called the class num-
ber of 𝒪𝐾 and will be denoted by ℎ𝐾 . Ideal classes form
a group and so it follows:
Theorem 5.2. Let ℐ be an ideal in𝒪𝐾 . Then ℐℎ𝐾 is a prin-
cipal ideal.

This theorem lies at the core of our study of ideals in the
ring 𝒪𝐾 . We will here on out be able to prove an ideal
is principal by showing it is equal to a ℎ𝐾 -th power of an
ideal.
We will now take a step back and dive into the ideas con-
necting unique factorisation in 𝒪𝐾 and class groups. For
one, the theorem above states that number fields withℎ𝐾 = 1 allow for any ideal to be principal. We can push
this observation further:
Theorem 5.3. If 𝐾 is a number field with ℎ𝐾 = 1, then𝑝 ∈ 𝒪𝐾 is irreducible iff the ideal (𝑝) is prime.
Proof. Firstly, let (𝑝) be a prime ideal and, say, 𝑝 = 𝑎𝑏
for some 𝑎, 𝑏 ∈ 𝒪𝐾 . According to theorem 3.2 it follows
that (𝑝) = (𝑎𝑏) = (𝑎)(𝑏), so unique factorisation dictates
one of 𝑎, 𝑏 be a unit and subsequently 𝑝 irreducible. On
the other side of the coin, let 𝑝 be irreducible and (𝑝) a
product of two two ideals in𝒪𝐾 . Since the theorem above
states that every ideal of 𝒪𝐾 is principal, or (𝑝) = (𝑎)(𝑏)
for some 𝑎, 𝑏 ∈ 𝒪𝐾 . The equality (𝑝) = (𝑎)(𝑏) = (𝑎𝑏)
and theorem 4.2 imply 𝑝 = 𝑢𝑎𝑏 for a unit 𝑢 ∈ 𝒪𝐾 . Since𝑝 is irreducible, at most one of 𝑎, 𝑏 is not a unit, therefore
one of (𝑎), (𝑏) is the ring𝒪𝐾 itself and (𝑝) is a prime ideal.
!
Corollary 5.1. Let𝐾 be a number field. If the class number
of 𝒪𝐾 is 1, then every element 𝒪𝐾 can be uniquely written
as a product of irreducible elements up to permutation and
multiplication by a unit.

Proof. First up, wewill show that every non-unit element
can be written as a product of irreducible elements. Sup-
pose that there are elements, that cannot be written as
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a product of irreducible elements and take 𝑥 ∈ 𝒪𝐾 one
such element with the least value of |𝑁(𝑥)|. Clearly 𝑛 is
not irreducible, so let 𝑛 = 𝑎𝑏 with 𝑎, 𝑏 both non-units.
Then 𝑁(𝑥) = 𝑁(𝑎)𝑁(𝑏), so |𝑁(𝑎)|, |𝑁(𝑏)| < |𝑁(𝑥)|, so by
the assumption 𝑎 and 𝑏 can both be written as a product
of irreducible elements. Since 𝑥 = 𝑎𝑏, this is the desired
contradiction.
Now, let ℎ𝐾 be 1 and 𝑛 ∈ 𝒪𝐾 with two factorisations into
irreducible elements 𝑢1𝑝1𝑝2 ⋯𝑝𝑘 = 𝑛 = 𝑢2𝑞1𝑞2 ⋯𝑞ℓ,
where 𝑢𝑖 are units. Theorem 3.2 implies the equality:(𝑝1) ⋅ (𝑝2)⋯ (𝑝𝑘) = (𝑝1𝑝2 ⋯𝑝𝑘) = (𝑞1𝑞2 ⋯𝑞ℓ)= (𝑞1) ⋅ (𝑞2)⋯ (𝑞ℓ).
The ideals (𝑝𝑖) and (𝑞𝑖) are prime due to the theorem
above. The decomposition of both sides into prime ideals
necessarily coincides, so theorem 4.2 implies the sets of
the corresponding irreducible generators are, up to mul-
tiplication by a unit, identical. !
It can be shown that unique factorisation in 𝒪𝐾 impliesℎ𝐾 = 1. We direct an interested reader to [2, Chapters 4
a 5] for a more in-depth treatment of ideal and number
decomposition in the ring 𝒪𝐾 .
We know the product of two principal ideals is also prin-
cipal, so, naturally, we may notice:

Theorem 5.4. Let ℐ be an ideal in𝒪𝐾 and 𝑘 an integer. Ifℐ𝑘 is a principal ideal and 𝑘 is relatively prime to ℎ𝐾 , thenℐ is principal.
Proof. If 𝑘 and ℎ𝐾 are coprime, Bezout’s lemma gives the
existence of integers 𝑎, 𝑏 with 𝑎𝑘 + 𝑏ℎ𝐾 = 1. Then ℐ =ℐ𝑎𝑘+𝑏ℎ𝐾 = (ℐ𝑘)𝑎 ⋅ (ℐℎ𝐾 )𝑏 is a product of two principal
ideals, since the power of a principal ideal (𝑥)𝑦 is by 3.2
the principal ideal (𝑥𝑦). It follows that ℐ is a principal
ideal in 𝒪𝐾 . !
For example, there are two ideal classes in the ringℤ [√−5], so if an odd power of ℐ is a principal, ℐ is prin-
cipal as well. Unique factorisation obviously does not
hold in this ring, as can be seen in the aforementioned
decomposition of the number 6.
We have described how divisibility in 𝒪𝐾 works in great
detail and discussed various properties of the ideal class
group. With that knowledge in mind, we can, at last,
get to solving diophantine equations. We solve two equa-
tions in section ”Problems” in Supporting informationus-
ing the methods we presented. An additional equation is
to be solved by an intrigued reader.

6 Conclusion

The study of number fields and ideal class groups helps
us in solving certain equation, which would have been
hardly solvable by elementary means. We have hope-
fully provided a small insight into the underlying theory,
even thoughwe had to omit numerous details. Themeth-
ods mentioned in this article allow us to solve harder
equations, as can the reader can read in [3] and my own

thesis [4], where I ended up solving a general equation of
the type quadratic = 𝑦3. The methods as outlined in the
text can be generalized further to take into acount other
monomials, such as 𝑦5. Pushing further quickly gets ugly
and substantially harder, for an example see Ramanujan
Nagell’s equation, see[7].
Frankly, the study of algebraic number theory leads to
many more important results than just solving a dio-
phantine equation. Studying this area of mathematics al-
lows for more thorough study of, for example, quadratic
residues and proving the Law of Quadratic Reciprocity
and extending it to the so-called Artin’s Reciprocity Law.
We can also among others studyDedekind zeta functions,
which are the generalisations of the one of Riemann, and
so are connected to the distribution of primes.
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